MASS-TRANSPORT CONSIDERATIONS FOR PRESSURE-DRIVEN MEMBRANE PROCESSES Academic Article uri icon

abstract

  • Numerical simulations and experimental work for evaluating transport mechanisms for colloidal foulants in pressure-driven membrane systems are discussed. A model for concentration polarization is used to explore the role of ionic strength in determining the distribution of dissolved humic materials near a rejecting membrane. Particle trajectory theory predicts that there should exist a critical particle size above which particles will not deposit on the membrane. For conditions typical of ultrafiltration and microfiltration, which operate in laminar flow and utilize an inside-out geometry, this critical particle diameter is likely to be in the range of 10-50 m. Qualitative evidence, based on measurements of permeate flux, supports the theoretical minimum in diffusive back-transport of particles predicted to occur for particles near 0.1 m in size.

published proceedings

  • JOURNAL AMERICAN WATER WORKS ASSOCIATION

author list (cited authors)

  • WIESNER, M. R., & CHELLAM, S.

citation count

  • 49

complete list of authors

  • WIESNER, MR||CHELLAM, S

publication date

  • January 1992

publisher