Characterization of stripping properties of stone material in asphalt Academic Article uri icon


  • Aggregates and bitumen together form a composite called asphalt concrete pavement. Moisture damage to asphalt concrete pavement can occur as stripping, and is a common problem that can lead to costly repairs. There is therefore a need to understand which stone aggregates adhere best to bituminous binder and result in a minimum of stripping. Lifshitz used the refractive index to estimate the dispersive non-polar van der Waal's interaction component of adhesion, the predominant component in adhesion between minerals and bituminous binder. The impact of an intervening thin medium such as air or water on the adhesion can be estimated using Hamaker's coefficient, which in turn can be related to stripping potential. Aggregates consist of minerals and minerals consist of different elements. The objective of this study was to investigate variation in the dispersive component of minerals via their refractive indices using data from mineral data sheets. The influence of the position of elements in the periodic table and chemical composition on refractive index of minerals was examined in order to classify mineral aggregates for asphalt road building with regard to dispersive adhesive properties and expected resistance to stripping. It is clear from this study that the elemental composition of a mineral will affect its refractive index and hence its dispersive adhesion to bitumen. Aggregates and minerals have been classified according to degree of stripping in the literature. In this study it was shown that aggregates and minerals that have a refractive index higher than approximately 1.6 are expected to be less susceptible to stripping. Also, minerals containing alkali metals are sensitive to stripping since they are partially soluble in water. 2012 RILEM.

published proceedings


author list (cited authors)

  • Lyne, A. L., Redelius, P., Collin, M., & Birgisson, B.

citation count

  • 18

complete list of authors

  • Lyne, Åsa Laurell||Redelius, Per||Collin, Måns||Birgisson, Björn

publication date

  • July 2013