Evaluation of Environmental Susceptibility of Bituminous Mastic Viscosity as a Function of Mineral and Biomass Fillers Academic Article uri icon

abstract

  • Bituminous mastics influence many other important asphalt mixture properties in addition to their own allowance for the load transfer in the aggregate skeleton. The influence of bituminous mastics extends to the overall stability of a mixture, air void distribution, bitumen draindown during transport, a mixture's workability during the laying process, and the overall in-time performance of the pavement. To understand the properties of asphalt mixtures and their resistance to environmentally induced failure mechanisms, it is paramount to study not only bitumen and the asphalt mixture but also the mastic itself. Current asphalt design procedures do not take mastic behavior into account, however; this omission leads to a significant flaw in the ability to design and predict asphalt concrete response. This paper presents the results of an ongoing research project to enhance the understanding of the mastic phase as well as to develop a new test protocol to characterize mastics. A description is given of the measurements of mastic viscosity for different types of mastics in which the bitumen source is kept as a constant but with varying fillers as well as concentrations. Environmental susceptibility was investigated by subjecting the samples to aging and moisture conditioning. Biomass fillers were included in some of the mastics, in addition to some of the traditional fillers, to show their impact on the viscosity under varying conditions. Results showed that the developed test protocol was able to identify clearly the impact of filler properties on the mastic viscosity. A critical filler concentration was identified beyond which the viscosity behavior became nonlinear. The results also showed that moisture and aging had significant effects on the viscosity of mastics.

published proceedings

  • TRANSPORTATION RESEARCH RECORD

author list (cited authors)

  • Hesami, E., Bidewell, N., Birgisson, B., & Kringos, N.

citation count

  • 8

complete list of authors

  • Hesami, Ebrahim||Bidewell, Nathan||Birgisson, Björn||Kringos, Niki

publication date

  • January 2013