Atomic level simulations of the interaction of asphaltene with quartz surfaces: role of chemical modifications and aqueous environment Academic Article uri icon

abstract

  • © 2016, RILEM. Understanding the properties of bitumen and its interaction with mineral aggregates is crucial for future strategies to improve roads and highways. Knowledge of basic molecular and electronic structures of bitumen, one out of the two main components of asphalt, poses a major step towards achieving such a goal. In the present work we employ atomistic simulation techniques to study the interaction of asphaltenes, a major constituent of bitumen, with quartz surfaces. As an effective means to tune adhesion or cohesion properties of asphaltenes and mineral surfaces, we propose chemical modification of the pristine asphaltene structure. By the choice of substituent and site of substitution we find that adhesion between the asphaltene molecule and the quartz surface can easily be improved at the same time as the cohesive interaction between the asphaltene units is reduced, while other substituents may lead to the opposite effect. We also provide insight at the molecular level into how water molecules affect interactions between asphaltenes and quartz. Our approach emphasizes a future role for advanced atomistic modeling to understand the properties of bitumen and suggest further improvements.

author list (cited authors)

  • Jena, N. K., Lyne, Ã., Arul Murugan, N., Ã…gren, H., & Birgisson, B.

citation count

  • 2

publication date

  • January 1, 2017 11:11 AM