Simplified limit solutions for the capacity of suction anchors under undrained conditions Academic Article uri icon


  • Upper bound plastic limit analyses (PLA) can provide a useful framework for estimating the load capacity of suction caisson anchors in purely cohesive soils. Since arbitrary assumptions regarding the soil stress state are not required in the PLA formulation, it may be used with greater consistency compared to other simplified approaches such as limit equilibrium methods. While PLA methods do not attempt to include all of the complexities of anchor behavior, they can provide a relatively simple framework for visualizing anchor kinematics leading to an understanding of the relative importance of various parameters on suction anchor load capacity. The most rigorous PLA formulations involve postulating a three-dimensional anchor-soil failure mechanism and deriving expressions for internal energy dissipation throughout the mechanism. This approach can involve extensive numerical integrations and a relatively complex scheme for optimizing the failure mechanism to obtain a least upper bound collapse load. Considerable simplification is possible if the problem is formulated in terms of ultimate unit resistances (lateral, axial, and their interaction) that can be exerted by the soil on the caisson. In this case, the caisson failure mechanism can be characterized in terms of one or two optimization variables. Simple expressions for the ultimate unit resistances acting on the caisson can be obtained from several sources including rigorous PLA solutions, finite element techniques, or experimental measurements. General expressions are possible by limiting consideration to common, idealized strength profiles such as uniform or constant gradient. Such simplified formulations are particularly valuable for providing an analysis tool accessible to practicing engineers. Suction caisson anchors can be subjected to a variety of load orientations including nearly vertical uplift forces imposed by the vertical tendons of tension leg platforms, horizontal loads imposed by catenary mooring systems, and inclined loads imposed by taut moorings. Recently, PLA methods have been applied to the analysis of suction caissons subjected to this range of loading conditions. This paper reviews the formulation of these analyses and summarizes the most significant findings. 2004 Elsevier Ltd. All rights reserved.

published proceedings

  • Ocean Engineering

author list (cited authors)

  • Aubeny, C., & Murff, J. D.

citation count

  • 27

complete list of authors

  • Aubeny, Charles||Murff, J Donald

publication date

  • January 2005