Genetic variability in populations of the southern chinch bug, Blissus insularis, assessed using AFLP analysis. Academic Article uri icon

abstract

  • Southern chinch bug, Blissus insularis Barber (Heteroptera: Blissidae), is the most destructive insect pest of St. Augustine grass, Stenotaphrum secundatum Waltz (Kuntze), in the southern United States. The present study is focused on assessing genetic variability in five populations of B. insularis collected from Texas and Florida where St. Augustine grass is widely grown. The amplified fragment length polymorphism technique was used to DNA fingerprint individuals from each population (a total of 46 individuals) using five primer combinations (EcoRI/MSeI). Analysis of molecular variance results show no evidence to support significant genetic variability among Texas and Florida populations of B. insularis. Nearly all genetic variation was found to reside within populations (95%), with only approximately 3% residing among populations between regions. Low G(ST) values obtained from POPGENE and low F(ST) values obtained from the analysis of molecular variance both support the conclusion for high levels of gene flow resulting from interbreeding and/or migratory events among the populations. A Mantel test of Euclidean squared distances showed no correlation between the genetic distance and geographic distance matrices of tested populations of B. insularis. The results of the present study suggests that gene flow is occurring among populations of B. insularis and, therefore, breeders need to be aware that this resistance will most likely not remain localized, and it has the potential to spread as a result of migratory events.

published proceedings

  • J Insect Sci

author list (cited authors)

  • Chandra, A., Reinert, J. A., LaMantia, J., Pond, J. B., & Huff, D. R.

citation count

  • 7

complete list of authors

  • Chandra, Ambika||Reinert, James A||LaMantia, Jonathan||Pond, J Blake||Huff, David R

publication date

  • December 2011