Equilibrium conditions of a class I tensegrity structure
Conference Paper

Overview

Additional Document Info

View All

Overview

abstract

Static models of tensegrity structures are reduced to linear algebra problems, after first characterizing the problem in a vector space where direction cosines are not needed. That is, we describe the components of all member vectors as opposed to the usual practice of characterizing the statics problem in terms of the magnitude of tension vectors. While our approach enlarges (by a factor of 3) the vector space required to describe the problem, the computational space is not increased. The advantage of enlarging the vector space makes the mathematical structure of the problem amenable to linear algebra treatment. Using the linear algebraic techniques, many variables are eliminated from the final existence equations. This paper characterizes the existence conditions for all tensegrity equilibria.