On the spatial and temporal sampling of soil moisture fields Academic Article uri icon

abstract

  • Recent work by Isham et al. and Rodrguez-Iturbe et al. has characterized the space-time variability of soil moisture through its analytically derived covariance function which depends on soil properties, vegetation structure, and rainfall patterns typical of a region. This paper uses such characterization to address the strategies and methodologies for the sampling of soil moisture fields. The focus is on the estimation of the long-term mean soil moisture and the daily soil moisture averaged over a given area as a function of the network geometry, number of stations, number of sampling days and landscape heterogeneity. It is found that the spatial geometry of the network has a significant impact on the sampling of the average soil moisture over an area in any particular day, while it is much less relevant for the sampling of the long-term mean daily soil moisture over the region. In the latter case, the length of the record is a commanding factor in what concerns the variance of estimation, specially for soils with shallow rooted vegetation. Spatial vegetation heterogeneity plays an important role on the variance of estimation of the soil moisture, being particularly critical for the sampling of the average soil moisture over an area for a given day. Copyright 2006 by the American Geophysical Union.

published proceedings

  • Water Resources Research

author list (cited authors)

  • Manfreda, S., & Rodrguez-Iturbe, I.

citation count

  • 20

complete list of authors

  • Manfreda, Salvatore||Rodríguez-Iturbe, Ignacio

publication date

  • May 2006