Kuril Islands tsunami of November 2006: 1. Impact at Crescent City by distant scattering Academic Article uri icon

abstract

  • A numerical model for the global tsunami computation constructed by Kowalik et al. (2005, 2007a) is applied to the tsunami of November 15, 2006 in the northern Pacific with spatial resolution of one minute. Numerical results are compared to sea level data collected by Pacific DART buoys. The tide gauge at Crescent City (CC) recorded an initial tsunami wave of about 20 cm amplitude and a second larger energy packet arriving 2 hours later. The first energy input into the CC harbor was the primary (direct) wave traveling over the deep waters of the North Pacific. Interactions with submarine ridges and numerous seamounts located in the tsunami path were a larger source of tsunami energy than the direct wave. Travel time for these amplified energy fluxes is longer than for the direct wave. Prime sources for the larger fluxes at CC are interactions with Koko Guyot and Hess Rise. Tsunami waves travel next over the Mendocino Escarpment where the tsunami energy flux is concentrated owing to refraction and directed toward CC. Local tsunami amplification over the shelf break and shelf are important as well. In many locations along the North Pacific coast, the first arriving signal or forerunner has lower amplitude than the main signal, which often is delayed. Understanding this temporal distribution is important for an application to tsunami warning and prediction. As a tsunami hazard mitigation tool, we propose that along with the sea level records (which are often quite noisy), an energy flux for prediction of the delayed tsunami signals be used. Copyright 2008 by the American Geophysical Union.

author list (cited authors)

  • Kowalik, Z., Horrillo, J., Knight, W., & Logan, T.

citation count

  • 59

complete list of authors

  • Kowalik, Z||Horrillo, J||Knight, W||Logan, Tom

publication date

  • January 2008