Velocity, acceleration and vorticity under a breaking wave
Academic Article
Overview
Identity
Additional Document Info
Other
View All
Overview
abstract
The fluid particle velocities in the overturning jet of a breaking wave have been measured by the Particle Image Velocimetry (PIV) technique. Monochromatic waves with wave height of 14.5 cm and wavelength of 121 cm were generated in the water depth of 20 cm. The measured fluid particle velocity at the tip of the overturning jet reached 1.68 times of the phase velocity calculated from the linear wave theory. Fluid particle accelerations were estimated from the velocity data with the following results: The overturning jet enters the horizontal water surface with an acceleration of 1.1 g at an angle of 88 downward. The PIV technique was also used to measure the instantaneous vertical vorticities generated by breaking waves. The number and locations of the vortices on the horizontal plane appear to be random. The maximum instantaneous vorticity was in the order of magnitude of 20-30 s-1, whereas the ensemble-averaged vorticity was quite small. 1998 American Institute of Physics.