Oh, Seung Jae (2011-02). Experimental Study of Bridge Scour in Cohesive Soil. Doctoral Dissertation. Thesis uri icon

abstract

  • The bridge scour depths in cohesive soil have been predicted using the scour equations developed for cohesionless soils due to scarce of studies about cohesive soil. The scour depths predicted by the conventional methods will result in significant errors. For the cost effective design of bridge scour in cohesive soil, the Scour Rate In COhesvie Soil (SRICOS) for the singular circular pier in deep water condition was released in 1999, and has been developed for complex pier and contraction scour. The present study is the part of SRICOS-EFA method to predict the history of contraction scour, and local scours, such as abutment scour and pier scour. The main objective is to develop the prediction methods for the maximum and the uniform contraction scour depth, the maximum pier scour depth and the maximum abutment using flume test results. The equations are basically composed with the difference between the local Froude number and the critical Froude number. Because the scour happens when the shear stress is bigger than the critical shear stress, which is the maximum shear stress the channel bed material can resist from the erosion, and continues until the shear stress becomes equal to the critical shear stress. All results obtained from flume tests for pier scour have been conducted in Texas A&M University from 1997 to 2002 are collected and reanalyzed in this study. Since the original pier scour equation did not include soil properties. The effect of water depth effect, pier spacing, pier shape and flow attack angle for the rectangular pier are studied and correction factors with respect to the circular pier in deep water condition were newly developed in present study. For the abutment scour, a series of flume tests in large scale was performed in the present study. Two types of channel - rectangular channel, and compound channel - were used. The effect of abutment length, shape and alignment of abutment were studied and the correction factors were developed. The patterns of velocity and of scour were compared, and it was found that the maximum local scour occurred where the maximum turbulence was measured. For the contraction scour, the results obtained from a series of flume tests performed in 2002 and a series of flume tests for the abutment scour in the present study are analyzed. The methodologies to predict the maximum contraction scour and the uniform contraction scour in the compound channel was developed. Although all prediction methods developed in the present study are for the cohesive soils, those methods may be applicable to the cohesionless soils because the critical shear stress is included in the methods. All prediction methods were verified by the comparison with the databases obtained from flume test results and field data.

publication date

  • February 2011