Comparison of selective attachment and growth of smooth muscle cells on gelatin- and fibronectin-coated micropatterns. Academic Article uri icon

abstract

  • Tissue engineering research has been on going for many years, people are making all the effort to explore the cell functions in cellular level and even in molecular level. Making the cells functional in an in vitro environment is a preliminary goal for the implantation and repair of complicated tissues/organs. Fabricating artificial ECM to mimic the in vivo environment is an essential approach in tissue engineering. The work in this paper is to study how rat aorta smooth muscle cells (RASMCs) behave in two engineered cell culture scaffolds: gelatin- and fibronectin (FN)-coated micropatterns. The investigation on the initial attachment and further growth of SMCs cultured on gelatin- and FN-coated micropatterns was addressed. This study focused on both the characterization of gelatin and fibronectin assembly properties and cell responses to these two protein-coated micropatterns. Thin film patterns with gelatin and fibronectin coatings were fabricated on microscope glass slides using photolithography, electrostatic layer-by-layer self-assembly and lift-off (LbL-LO) technologies. In this work, the scaffolds were built up by commonly used polyelectrolyte materials and proteins through LbL process, containing cationic poly(diallyldimethylammonium chloride) (PDDA), poly(allylamine hydrochloride) (PAH), anionic poly(sodium 4-styrenesulfonate) (PSS), gelatin and fibronectin. The resulting polyelectrolyte thin films were characterized by contact angle (CA), quartz crystal microbalance (QCM), atomic force microscopy (AFM), and fluorescence microscopy. CA measurement shows the consistent hydrophylicity of gelatin surfaces in different number of layers with LbL deposition method. Different from our previous QCM measurement of gelatin, fibronectin does not show high electrostatic attraction to either positively or negatively charged polyelectrolytes, although it can be weakly assembled to both polyelectrolyte surfaces. AFM images show Gelatin- and FN-coated micropatterns are around 50-60 nm thick. RASMCs were cultured on these gelatin- and FN-coated micropatterns. It was observed that, for the cells cultured on gelatin-coated micropatterns, they initially landed on the gelatin-coated surface, not on the PDDA-coated surface in between. But further growth of the cells was affected by the shape of the patterns: strip pattern limited cell growth beyond the patterns, but square patterns could not. While, it was found interestingly, for the cells cultured on FN-coated micropatterns, SMCs initially landed on PDDA-coated surface, and then migrated to FN-coated both square and strip patterns. These findings indicate that both gelatin and fibronectin are adhesive proteins, but they have different effects on the initial attachment and later growth for SMCs.

published proceedings

  • J Nanosci Nanotechnol

altmetric score

  • 3

author list (cited authors)

  • Li, M., Cui, T., Mills, D. K., Lvov, Y. M., & McShane, M. J.

citation count

  • 26

complete list of authors

  • Li, M||Cui, T||Mills, DK||Lvov, YM||McShane, MJ

publication date

  • January 2005