We demonstrate that polarized light is maintained differently in densely packed versus dilute suspensions of polystyrene microspheres. The degrees of linear and circular polarization were measured versus scatterer concentration in aqueous suspensions of 0.48-, 0.99-, 2.092-, and 9.14-mum-diameter polystyrene microspheres. The results indicate that, for dilute suspensions of microspheres where independent scattering is assumed, the degrees of linear and circular polarization decrease as the scatterer concentration increases. For dense suspensions, however, the degree of polarization begins to increase as the scatterer concentration increases. The preferential propagation of linear over circular polarization states in dense suspensions is similar to results seen in biological tissue.