Formation of binucleated myocardial cells in the neonatal rat. An index for growth hypertrophy. Academic Article uri icon

abstract

  • The purposes of this study were to characterize myocardial cell growth in neonatal rats and investigate the mechanism of binucleation in myocardial cells. To test the hypothesis that binucleated myocardial cells result from karyokinesis without cytokinesis, experiments were designed to measure the rate of DNA synthesis and the percentage of binucleated myocardial cells in neonatal rats during growth. Estimates of myocardial cell nuclear divisions were obtained from rats pulsed with tritiated thymidine at 17 days of gestation. Autoradiograms were prepared from isolated myocardial cells of rats killed at various ages postpartum, and the number of developed silver halide grains over myocardial cell nuclei was calculated. This estimated the mitotic activity of nuclei. To determine myocardial cell DNA synthesis postpartum, another set of rats were injected at various time periods with 4 hourly doses of tritiated thymidine, and hearts were fixed by perfusion 1 hour later. Labeling index of myocardial cells was calculated (labeled/total myocardial cells) from autoradiograms prepared on 1 micron thick, methacrylate-embedded heart cross-sections. Results of this study indicated that the growth of myocardial cells in the neonatal period can be divided into three phases: (a) a hyperplastic phase, (b) a transitional phase, and (c) a hypertrophic phase. Binucleation of myocardial cells was not due to fusion of mononucleated cells, because there was continued DNA synthesis in the neonatal hearts, reflected by continued incorporation of tritiated thymidine; in addition, the grain counts per nucleus of the binucleated myocardial cells were half that of mononucleated cells; nor was binucleation due to amitotic splitting of single nuclei, since binucleated myocardial cells had similar grain counts over each nucleus. We conclude that the formation of binucleated myocardial cells is an early indicator of growth hypertrophy in the neonatal rat and a result of mitosis without cytokinesis.

published proceedings

  • Lab Invest

author list (cited authors)

  • Clubb, F. J., & Bishop, S. P.

citation count

  • 236

complete list of authors

  • Clubb, FJ||Bishop, SP

publication date

  • May 1984