Multilayer Design Techniques for Extremely Miniaturized CMOS Microwave and Millimeter-Wave Distributed Passive Circuits Academic Article uri icon

abstract

  • Multilayer design techniques are investigated for reducing the size and enhancing the performance of microwave and millimeter-wave distributed circuits in CMOS. Various distributed passive circuits are implemented in a standard 0.25-μm RF/mixed-signal process, including a novel broadside-coupled Lange coupler, a microstrip ring hybrid, and a hairpin resonator incorporating a complementary slow-wave structure. The broadside-coupled Lange coupler exhibits -3.3 to -3.35 dB through, -3.3 to -3.7 dB coupling, more than 12-dB isolation, and 15-dB return loss across 25-35 GHz while occupying only 217 × 185 μm of chip area. The multilayer ring hybrid has -3.1 to -3.18 dB through, -5.1 to -5.7 dB coupling, and more than 17-dB isolation and 10-dB return loss from 25-35 GHz while occupying 282 × 314 μm. A slow-wave structure based on multilayer complementary design principle is implemented for hairpin resonators. The measured quality factor of the multilayer complementary slow-wave hairpin resonator increases to about 14.5 from 11.3 for a similar sized resonator with a single-layer slow-wave structure, while retaining similar size-reduction properties as the latter. © 2006 IEEE.

altmetric score

  • 3

author list (cited authors)

  • Chirala, M. K., & Nguyen, C.

citation count

  • 37

publication date

  • December 2006