Design, Fabrication, and Characterization of Thermally Actuated Probe Arrays for Dip Pen Nanolithography
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
In Dip Pen Nanolithography (DPN), arbitrary nanoscale chemical patterns can be created by the diffusion of chemicals from the tip of an atomic force microscope (AFM) probe to a surface. This paper describes the design, optimization, fabrication, and testing of an actuated multi-probe DPN array. The probe array consists of 10 thermal bimorph active probes made of silicon nitride and gold. The probes are 300 m long and the tips are spaced 100 m apart. An actuation current of 10 mA produces a tip deflection of 8 m, which is enough to remove individual tips from the surface independent of the adjacent probes. An analytical probe model is presented and used to optimize the design against several possible failure modes. The array is demonstrated by using it to simultaneously write 10 unique octadecanethiol patterns on a gold surface. Pattern linewidth as small as 80 nm has been created at a maximum write speed of 20 m/sec. By writing multiple, distinctly different patterns in parallel, this device provides a significant improvement in throughput and flexibility over conventional AFM probes in the DPN process. 2004 IEEE.