An information-theoretic metric of system complexity with application to engineering system design Academic Article uri icon


  • System complexity is considered a key driver of the inability of current system design practices to at times not recognize performance, cost, and schedule risks as they emerge. We present here a definition of system complexity and a quantitative metric for measuring that complexity based on information theory. We also derive sensitivity indices that indicate the fraction of complexity that can be reduced if more about certain factors of a system can become known. This information can be used as part of a resource allocation procedure aimed at reducing system complexity. Our methods incorporate Gaussian process emulators of expensive computer simulation models and account for both model inadequacy and code uncertainty. We demonstrate our methodology on a candidate design of an infantry fighting vehicle. 2012 American Society of Mechanical Engineers.

published proceedings

  • Journal of Mechanical Design, Transactions of the ASME

author list (cited authors)

  • Allaire, D., He, Q., Deyst, J., & Willcox, K.

citation count

  • 19

complete list of authors

  • Allaire, D||He, Q||Deyst, J||Willcox, K

publication date

  • October 2012