Multifidelity DDDAS Methods with Application to a Self-Aware Aerospace Vehicle Conference Paper uri icon

abstract

  • A self-aware aerospace vehicle can dynamically adapt the way it performs missions by gathering information about itself and its surroundings and responding intelligently. We consider the specific challenge of an unmanned aerial vehicle that can dynamically and autonomously sense its structural state and re-plan its mission according to its estimated current structural health. The challenge is to achieve each of these tasks in real time-executing online models and exploiting dynamic data streams-while also accounting for uncertainty. Our approach combines information from physics-based models, simulated offline to build a scenario library, together with dynamic sensor data in order to estimate current flight capability. Our physics-based models analyze the system at both the local panel level and the global vehicle level. The Authors. Published by Elsevier B.V.

published proceedings

  • 2014 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE

author list (cited authors)

  • Allaire, D., Kordonowy, D., Lecerf, M., Mainini, L., & Willcox, K.

citation count

  • 37

complete list of authors

  • Allaire, D||Kordonowy, D||Lecerf, M||Mainini, L||Willcox, K

publication date

  • January 2014