Arterial pulse wave reflection as feedback.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Traditionally, input impedance (Z(in)) has been used to characterize the global dynamic properties of an arterial system independent of properties of the heart. Defined as the relationship of pressure and flow at the entrance of an arterial system, it describes the ability of an arterial system to dynamically impede blood flow. Recently, a new description has been developed that also characterizes the arterial system independent of properties of the heart. Apparent arterial compliance (C(app)) is defined as the dynamic relationship of input pressure and volume stored in an arterial system, and describes the ability of the arterial system to dynamically store blood. Both Z(in) and C(app) are influenced by pulse wave propagation and reflection. However, the functional form of Capp lends itself to describing the arterial system in terms of negative feedback. Pulse wave reflection decreases the pulsatile volume stored (gain) at low frequencies, but increases the range of frequencies (bandwidth) in which the pulsatile volume is determined by total arterial compliance. This paper illustrates, by simple analytical formula, large-scale arterial system modeling, and direct analysis of data, how this conceptualization of reflection offers a new means to interpret changes in arterial system dynamics resulting from changes in arterial compliance.