Lower bounds for real solutions to sparse polynomial systems
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
We show how to construct sparse polynomial systems that have non-trivial lower bounds on their numbers of real solutions. These are unmixed systems associated to certain polytopes. For the order polytope of a poset P this lower bound is the sign-imbalance of P and it holds if all maximal chains of P have length of the same parity. This theory also gives lower bounds in the real Schubert calculus through the sagbi degeneration of the Grassmannian to a toric variety, and thus recovers a result of Eremenko and Gabrielov. 2005 Elsevier Inc. All rights reserved.