Skew Schubert polynomials Conference Paper uri icon


  • We define skew Schubert polynomials to be normal form (polynomial) representatives of certain classes in the cohomology of a flag manifold. We show that this definition extends a recent construction of Schubert polynomials due to Bergeron and Sottile in terms of certain increasing labeled chains in Bruhat order of the symmetric group. These skew Schubert polynomials expand in the basis of Schubert polynomials with nonnegative integer coefficients that are precisely the structure constants of the cohomology of the complex flag variety with respect to its basis of Schubert classes. We rederive the construction of Bergeron and Sottile in a purely combinatorial way, relating it to the construction of Schubert polynomials in terms of rc-graphs.

published proceedings

  • Proceedings of the American Mathematical Society

author list (cited authors)

  • Lenart, C., & Sottile, F.

citation count

  • 6

complete list of authors

  • Lenart, Cristian||Sottile, Frank

publication date

  • February 2003