A Geometric Approach to the Global Attractor Conjecture
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
2014 Society for Industrial and Applied Mathematics. This paper introduces the class of strongly endotactic networks, a subclass of the endotactic networks introduced by Craciun, Nazarov, and Pantea. The main result states that the global attractor conjecture holds for complex-balanced systems that are strongly endotactic: every trajectory with positive initial condition converges to the unique positive equilibrium allowed by conservation laws. This extends a recent result by Anderson for systems where the reaction diagram has only one linkage class (connected component). The results here are proved using differential inclusions, a setting that includes power-law systems. The key ideas include a perspective on reaction kinetics in terms of combinatorial geometry of reaction diagrams, a projection argument that enables analysis of a given system in terms of systems with lower dimension, and an extension of Birch's theorem, a well-known result about intersections of affine subspaces with manifolds parameterized by monomials.