An eigenvector interlacing property of graphs that arise from trees by Schur complementation of the Laplacian.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
The literature is replete with rich connections between the structure of a graph G = (V, E) and the spectral properties of its Laplacian matrix L. This paper establishes similar connections between the structure of G and the Laplacian L* of a second graph G*. Our interest lies in L* that can be obtained from L by Schur complementation, in which case we say that G* is partially-supplied with respect to G. In particular, we specialize to where G is a tree with points of articulation r R and consider the partially-supplied graph G* derived from G by taking the Schur complement with respect to R in L. Our results characterize how the eigenvectors of the Laplacian of G* relate to each other and to the structure of the tree.