Stabilized discontinuous finite element approximations for Stokes equations Academic Article uri icon


  • In this paper, we derive two stabilized discontinuous finite element formulations, symmetric and nonsymmetric, for the Stokes equations and the equations of the linear elasticity for almost incompressible materials. These methods are derived via stabilization of a saddle point system where the continuity of the normal and tangential components of the velocity/displacements are imposed in a weak sense via Lagrange multipliers. For both methods, almost all reasonable pair of discontinuous finite element spaces can be used to approximate the velocity and the pressure. Optimal error estimate for the approximation of both the velocity of the symmetric formulation and pressure in L2 norm are obtained, as well as one in a mesh-dependent norm for the velocity in both symmetric and nonsymmetric formulations. 2006 Elsevier B.V. All rights reserved.

published proceedings


author list (cited authors)

  • Lazarov, R., & Ye, X.

citation count

  • 10

complete list of authors

  • Lazarov, Raytcho||Ye, Xiu

publication date

  • January 2007