Pointwise Green's function approach to stability for scalar conservation laws
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
We study the pointwise behavior of perturbations from a viscous shock solution to a scalar conservation law, obtaining an estimate independent of shock strength. We find that for a perturbation with initial data decaying algebraically or slower, the perturbation decays in time at the rate of decay of the integrated initial data in any Lp norm, p 1. Stability in any Lp norm is a direct consequence. The approach taken is that of obtaining pointwise estimates on the perturbation through a Duhamel's principle argument that employs recently developed pointwise estimates on the Green's function for the linearized equation. 1999 John Wiley & Sons, Inc.