The Evans function and stability criteria for degenerate viscous shock waves
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
It is well known that the stability of certain distinguished waves arising in evolutionary PDE can be determined by the spectrum of the linear operator found by linearizing the PDE about the wave. Indeed, work over the last fifteen years has shown that spectral stability implies nonlinear stability in a broad range of cases, including asymptotically constant traveling waves in both reaction-diffusion equations and viscous conservation laws. A critical step toward analyzing the spectrum of such operators was taken in the late eighties by Alexander, Gardner, and Jones, whose Evans function (generalizing earlier work of John W. Evans) serves as a characteristic function for the above-mentioned operators. Thus far, results obtained through working with the Evans function have made critical use of the function's analyticity at the origin (or its analyticity over an appropriate Riemann surface). In the case of degenerate (or sonic) viscous shock waves, however, the Evans function is certainly not analytic in a neighborhood of the origin, and does not appear to admit analytic extension to a Riemann manifold. We surmount this obstacle by dividing the Evans function (plus related objects) into two pieces: one analytic in a neighborhood of the origin, and one sufficiently small.