MMP2-Sensitive PEG-Lipid Copolymers: A New Type of Tumor-Targeted P-Glycoprotein Inhibitor. Academic Article uri icon

abstract

  • Low tumor targetability and multidrug resistance (MDR) are two major impediments to the success of cancer treatments. Nanomaterials which possess high tumor targetability and the ability to reverse the MDR are rare. This report describes a new type of self-assembling polyethylene glycol-phosphoethanolamine-based copolymers (PEG-pp-PE) which showed both the matrix metalloproteinase 2 (MMP2)-sensitive tumor-targeted drug delivery and ability to inhibit the P-glycoprotein (P-gp)-mediated drug efflux. In this study, we synthesized a series of the homologous analogues of PEG-pp-PE copolymers and investigated the influence of their structures, including PEG lengths and peptide linkers, on the drug efflux, and identified the underlying mechanisms. We found that the whole structure (PEG-peptide-lipid) rather than any parts of the copolymers was key for the P-gp inhibition and a delicate balance between the hydrophilic and lipophilic segments of the PEG-pp-PE copolymers was needed for better modulating the P-gp-mediated drug efflux. The best copolymer, PEG2k-pp-PE, showed even higher P-gp inhibition effect than the d--tocopherol polyethylene glycol 1000 succinate (TPGS1k). We also found that the P-gp inhibition capability of PEG-pp-PE copolymers was highly associated with the P-gp down-regulation, the increase in the plasma membrane fluidity, and the inhibition of the P-gp ATPase activity. Besides, the excellent physicochemical properties, high drug loading, MMP2-dependent drug release, and improved drug efficacy in the MDR cancer cells suggested that the PEG-pp-PE copolymers might have great potential for building tumor-targeted drug delivery systems for treating drug-resistant cancers.

published proceedings

  • ACS Appl Mater Interfaces

author list (cited authors)

  • Dai, Z., Yao, Q., & Zhu, L.

citation count

  • 50

complete list of authors

  • Dai, Zhi||Yao, Qing||Zhu, Lin

publication date

  • May 2016