Decomposition Based Stochastic Programming Approach for Polygeneration Energy Systems Design under Uncertainty Academic Article uri icon


  • Polygeneration, a multi-input multioutput energy conversion process which typically involves the coproduction of electricity and liquid synthetic fuels, is a promising technology which offers real potential toward the reduction of excessive energy consumption and consequent greenhouse gas emissions. The optimal design of such a complex and nonlinear process system under inevitable and unpredictable future uncertainty poses great challenges in terms of both modeling and corresponding solution strategies. In this paper, we propose a stochastic programming framework for the optimal design under uncertainty of polygeneration energy systems. On the basis of a detailed mixed-integer nonlinear programming (MINLP) model, proposed in our previous work, a two-stage stochastic programming problem is formulated, which is then converted into a large-scale multiperiod MINLP problem by employing cubature based integration and sampling techniques. A decomposition algorithm is utilized for the efficient solution of the multiperiod problem, which involves iterations between a set of nonlinear subproblems of much smaller size and a master mixed-integer linear programming problem. A case study is then presented, where detailed computational results and comparisons between optimal designs obtained for both the stochastic and deterministic cases are shown. 2010 American Chemical Society.

published proceedings


author list (cited authors)

  • Liu, P., Pistikopoulos, E. N., & Li, Z.

citation count

  • 58

publication date

  • April 2010