Dynamic modeling and explicit/multi-parametric MPC control of pressure swing adsorption systems Academic Article uri icon

abstract

  • Pressure swing adsorption (PSA) is a flexible, albeit complex gas separation system. Due to its inherent nonlinear nature and discontinuous operation, the design of a model based PSA controller, especially with varying operating conditions, is a challenging task. This work focuses on the design of an explicit/multi-parametric model predictive controller for a PSA system. Based on a system involving four adsorbent beds separating 70% H2, 30% CH4 mixture into high purity hydrogen, the key controller objective is to fast track H2 purity to a set point value of 99.99%. To perform this task, a rigorous and systematic framework is employed. First, a high fidelity detailed dynamic model is built to represent the system's real operation, and understand its dynamic behavior. The model is then used to derive appropriate linear models by applying suitable system identification techniques. For the reduced models, a model predictive control (MPC) step is formulated, where latest developments in multi-parametric programming and control are applied to derive a novel explicit MPC controller. To test the performance of the designed controller, closed loop simulations are performed where the dynamic model is used as the virtual plant. Comparison studies of the derived explicit MPC controller are also performed with conventional PID controllers. 2010 Elsevier Ltd. All rights reserved.

published proceedings

  • JOURNAL OF PROCESS CONTROL

altmetric score

  • 3

author list (cited authors)

  • Khajuria, H., & Pistikopoulos, E. N.

citation count

  • 48

complete list of authors

  • Khajuria, Harish||Pistikopoulos, Efstratios N

publication date

  • January 2011