An integrated framework for robust and flexible process systems
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
This paper presents developments toward a unified framework for incorporating both process flexibility and robustness (in terms of product quality) criteria in process optimization under uncertainty. A robust design methodology, known as the Taguchi approach, is discussed in the context of uncertainty, and some limitations are identified. Taguchi's method is then extended to take into account process constraints and probabilistic uncertainty. A framework for establishing the interactions and synergistic benefits between the two operability objectives is proposed, based on an expected measure, where product quality losses are taken into account explicitly. Tradeoffs between stochastic flexibility and a robust criterion are explored in order to depict optimal operating policies in the presence of uncertainty; extensions toward design optimization are also briefly discussed. A number of examples is presented to illustrate the applicability of the proposed framework.