A Monte-Carlo based model approximation technique for linear model predictive control of nonlinear systems Academic Article uri icon

abstract

  • In this paper we present a model approximation technique based on N-step-ahead affine representations obtained via Monte-Carlo integrations. The approach enables simultaneous linearization and model order reduction of nonlinear systems in the original state space thus allowing the application of linear MPC algorithms to nonlinear systems. The methodology is detailed through its application to benchmark model examples. 2013 Elsevier Ltd.

published proceedings

  • COMPUTERS & CHEMICAL ENGINEERING

author list (cited authors)

  • Lambert, R., Rivotti, P., & Pistikopoulos, E. N.

citation count

  • 27

complete list of authors

  • Lambert, Romain SC||Rivotti, Pedro||Pistikopoulos, EN

publication date

  • July 2013