Constrained dynamic programming of mixed-integer linear problems by multi-parametric programming
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
2014 Elsevier Ltd. This work addresses the topic of constrained dynamic programming for problems involving multi-stage mixed-integer linear formulations with a linear objective function. It is shown that such problems may be decomposed into a series of multi-parametric mixed-integer linear problems, of lower dimensionality, that are sequentially solved to obtain the globally optimal solution of the original problem. At each stage, the dynamic programming recursion is reformulated as a convex multi-parametric programming problem, therefore avoiding the need for global optimisation that usually arises in hard constrained problems. The proposed methodology is applied to a problem of mixed-integer linear nature that arises in the context of inventory scheduling. The example also highlights how the complexity of the original problem is reduced by using dynamic programming and multi-parametric programming.