Ex-situ X-ray tomography characterization of porosity during high-temperature creep in a Ni-based single-crystal superalloy: Toward understanding what damage is Academic Article uri icon

abstract

  • 2017 Elsevier B.V. Creep damage by void nucleation and growth limits the lifetime of components subjected to mechanical loads at high temperatures. For the first time, the porosity of a Ni-based single crystal superalloy subjected to high temperature creep tests (T1000C) is followed by ex-situ X-ray computed tomography. A large experimental campaign consisting of nine temperature/stress conditions is carried out to determine the kinetics of the damage accumulation by voids. It is, indeed, essential to characterize their evolution to create internal variables describing properly the evolution of damage in a Continuum Damage Mechanics framework. Nonetheless, it is pointed out that the increase in the plastic strain rate during the tertiary creep stage is not necessarily related to the increase in the pore volume fraction for the alloy and temperature range explored (10001100C). Therefore, it seems that the changes in the microstructure, i.e. precipitation coarsening and / topological inversion, and the shearing of the particles have to be considered further to properly describe the damage evolution. Thus, the Continuum Damage Mechanics theory is undermined and should be replaced by a transformative paradigm taken into consideration microstructural evolutions in order to improve the predictability of further damage models.

published proceedings

  • MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING

author list (cited authors)

  • le Graverend, J., Adrien, J., & Cormier, J.

citation count

  • 37

complete list of authors

  • le Graverend, Jean-Briac||Adrien, Jerome||Cormier, Jonathan

publication date

  • January 2017