Nutritional Value of Habitat for Moose on Urban and Military Lands Academic Article uri icon

abstract

  • Abstract Moose Alces alces are large and conspicuous animals valued for wildlife watching and hunting opportunities. However, near urban areas they can cause collisions with vehicles and damage to garden and ornamental plants. We studied a population of adult female moose that lives in and around both urban and industrial development on an active Army and Air Force base adjacent to Anchorage, Alaska, to evaluate nutrition and diet, map habitat quality, and model how habitat development affects the number of moose the landscape can support. Population density was moderate and hunter harvest was high in our study area, so we hypothesized that moose in our study area would be in similar condition to other healthy populations in Alaska. We also hypothesized that, in our study area, shrublands would support more moose than any other habitat type and that areas disturbed for urban development would be crucial to maintaining the local moose population. Rump fat depths, blood chemistries, and pregnancy rates in November and March for moose in our study area were consistent with populations in good to moderate condition. Microhistology of composite fecal samples indicated that willows Salix spp. dominated the summer diet, whereas the winter diet was divided among willows, birch Betula spp., and cottonwood Populus balsamifera. Low concentrations of available nitrogen in winter stems limited the number of moose that could be supported in our study area. Shrublands were the most valuable habitat type for moose, theoretically supporting 1181 times more moose per hectare than any other habitat type. Shrublands were more concentrated within the developed portion of our study area than the surrounding undeveloped portions of the military base; and the access to shrublands in clearings, greenbelts, and parks sustains the productivity of this moose population despite the many disturbances of an urbanized landscape. Our habitat values can be used to model potential impacts of habitat modification on the number of moose the landscape can support.

published proceedings

  • Journal of Fish and Wildlife Management

author list (cited authors)

  • Welch, J. H., Barboza, P. S., Farley, S. D., & Spalinger, D. E.

citation count

  • 5

complete list of authors

  • Welch, Joseph H||Barboza, Perry S||Farley, Sean D||Spalinger, Donald E

publication date

  • June 2015