Persistence of invariant sets for dissipative evolution equations
Academic Article
Overview
Identity
Additional Document Info
Other
View All
Overview
abstract
We show that results concerning the persistence of invariant sets of ordinary differential equations under perturbation may be applied directly to a certain class of partial differential equations. Our framework is particularly well-suited to encompass numerical approximations of these partial differential equations. Specifically, we show that for a class of PDEs with aC1inertial form, certain natural numerical approximations possess an inertial form close to that of the underlying PDE in theC1norm. 1998 Academic Press.