Alterations in transmural strains adjacent to ischemic myocardium during acute midcircumflex occlusion. Conference Paper uri icon

abstract

  • OBJECTIVE: Helically oriented left ventricular fibers assemble into transmural sheets, which are important for wall-thickening mechanics: 15% fiber shortening results in 40% cross-fiber left ventricular wall thickening and a 60% ejection fraction through sheet extension, thickening, and shear. Normal cardiac microstructure and strains are optimized; deviations could result in apoptosis and deleterious matrix remodeling, which degenerates into global cardiomyopathy. We studied alterations in transmural strains adjacent to ischemic myocardium during acute midcircumflex occlusion. METHODS: Nine sheep had radiopaque markers implanted to measure left ventricular systolic fractional area shortening; 3 transmural bead columns were inserted into the midlateral wall for strain analysis. Three-dimensional marker coordinates were obtained with biplane videofluoroscopy before and during 70 seconds of ischemia. Systolic strains were quantified along circumferential, longitudinal, and radial axes (n = 9) and were transformed into fiber-sheet coordinates by using quantitative microstructural measurements (n = 5). RESULTS: A functional border was defined in the midlateral left ventricle; ischemia decreased posterolateral fractional area shortening, and anterolateral fractional area shortening increased. In this demarcation junction, subepicardial end-systolic radial wall thickening decreased (0.16 +/- 0.08 vs 0.11 +/- 0.06) and sheet-normal shear was abolished (0.08 +/- 0.04 vs -0.01 +/- 0.03). Longitudinal shortening decreased in the subepicardium and midwall (-0.05 +/- 0.04 vs +/- -0.01 +/- 0.06), but circumferential-radial shear increased at these depths (0.04 +/- 0.04 vs 0.11 +/- 0.05). Subendocardial fiber stretch occurred during early systole (-0.01 +/- 0.03 vs 0.02 +/- 0.03), and end-systolic fiber-sheet shear increased (0.07 +/- 0.01 vs 0.11 +/- 0.04, all P < .05). CONCLUSIONS: Increased circumferential-radial shear and altered fiber-sheet strains reflect mechanical interactions between ischemic and nonischemic myocardium, which might be important in triggering remodeling processes that evolve into global ischemic cardiomyopathy.

published proceedings

  • J Thorac Cardiovasc Surg

author list (cited authors)

  • Rodriguez, F., Langer, F., Harrington, K. B., Cheng, A., Daughters, G. T., Criscione, J. C., Ingels, N. B., & Miller, D. C.

citation count

  • 27

complete list of authors

  • Rodriguez, Filiberto||Langer, Frank||Harrington, Katherine B||Cheng, Allen||Daughters, George T||Criscione, John C||Ingels, Neil B||Miller, D Craig

publication date

  • January 2005