Clique-detection models in computational biochemistry and genomics Academic Article uri icon

abstract

  • Many important problems arising in computational biochemistry and genomics have been formulated in terms of underlying combinatorial optimization models. In particular, a number have been formulated as clique-detection models. The proposed article includes an introduction to the underlying biochemistry and genomic aspects of the problems as well as to the graph-theoretic aspects of the solution approaches. Each subsequent section describes a particular type of problem, gives an example to show how the graph model can be derived, summarizes recent progress, and discusses challenges associated with solving the associated graph-theoretic models. Clique-detection models include prescribing (a) a maximal clique, (b) a maximum clique, (c) a maximum weighted clique, or (d) all maximal cliques in a graph. The particular types of biochemistry and genomics problems that can be represented by a clique-detection model include integration of genome mapping data, nonoverlapping local alignments, matching and comparing molecular structures, and protein docking. 2005 Elsevier B.V. All rights reserved.

published proceedings

  • EUROPEAN JOURNAL OF OPERATIONAL RESEARCH

altmetric score

  • 3

author list (cited authors)

  • Butenko, S., & Wilhelm, W. E.

citation count

  • 119

complete list of authors

  • Butenko, S||Wilhelm, WE

publication date

  • January 2006