Generalized and Quasi-Localizations of Braid Group Representations
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
We develop a theory of localization for braid group representations associated with objects in braided fusion categories and, more generally, to Yang-Baxter (YB) operators in monoidal categories. The essential problem is to determine when a family of braid representations can be uniformly modelled upon a tensor power of a fixed vector space in such a way that the braid group generators act "locally". Although related to the notion of (quasi-)fiber functors for fusion categories, remarkably, such localizations can exist for representations associated with objects of non-integral dimension. We conjecture that such localizations exist precisely when the object in question has dimension the square-root of an integer and prove several key special cases of the conjecture. 2012 The Author(s). Published by Oxford University Press. All rights reserved.