Metabolomic analysis of amino acid and fat metabolism in rats with L-tryptophan supplementation.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Tryptophan (TRP) is an important precursor for several neurotransmitters and metabolic regulators, which play a vital role in regulating nutrient metabolism. The purpose of this study was to investigate the effects of tryptophan supplementation on the biochemical profiles, intestinal structure, liver structure and serum metabolome in rats. Rats received daily intragastric administration of either tryptophan at doses of 200 mg/kg body weight per day or saline (control group) for 7 days. TRP supplementation had a tendency to decrease the body weight of rats (P > 0.05). The levels of urea and CHO in serum were decreased in the TRP-supplemented group rats compared with control group rats (P < 0.05). TRP supplementation increased the villus height and the ratio of villus height to crypt depth in the jejunum compared to control group rats (P < 0.05). Metabolic effects of tryptophan supplementation include: (1) increases in the serum concentrations of lysine, glycine, alanine, glutamate, glutamine, citrulline, methionine, tyrosine, 1-methylhistidine, and albumin, and decreases in the concentrations of serum branched-chain amino acid (isoleucine, valine and leucine); (2) decreases in the serum concentrations of formate and nitrogenous products (trimethylamine, TMAO, methylamine and dimethylamine), and in the contraction of trimethylamine in feces; (3) decreases in serum levels of lipids, low density lipoprotein, very low density lipoprotein, together with the elevated ratio of acetoacetate to -hydroxybutyrate. The results indicate that tryptophan supplementation reduced the catabolism of dietary amino acids and promoted protein synthesis in rats, promoted the oxidation of fatty acid and reduced fat deposition in the body of rats.