The trace formula in Banach spaces
Academic Article
-
- Overview
-
- Identity
-
- Additional Document Info
-
- View All
-
Overview
abstract
-
© 2014, Hebrew University of Jerusalem. A classical result of Grothendieck and Lidskii says that the trace formula (that the trace of a nuclear operator is the sum of its eigenvalues provided the sequence of eigenvalues is absolutely summable) holds in Hilbert spaces. In 1988, Pisier proved that weak Hilbert spaces satisfy the trace formula. We exhibit a much larger class of Banach spaces, called Γ-spaces, that satisfy the trace formula. A natural class of asymptotically Hilbertian spaces, including some spaces that are ℓ2 sums of finite-dimensional spaces, are Γ-spaces. One consequence is that the direct sum of two Γ-spaces need not be a Γ-space.
author list (cited authors)
-
Johnson, W. B., & Szankowski, A.
citation count
complete list of authors
-
Johnson, WB||Szankowski, A
publication date
publisher
published in
Identity
Digital Object Identifier (DOI)
Additional Document Info
start page
end page
volume
issue