Hydrodynamic stability of three-dimensional homogeneous flow topologies. Academic Article uri icon

abstract

  • This article examines the hydrodynamic stability of various homogeneous three-dimensional flow topologies. The influence of inertial and pressure effects on the stability of flows undergoing strain, rotation, convergence, divergence, and swirl are isolated. In marked contrast to two-dimensional topologies, for three-dimensional flows the inertial effects are always destabilizing, whereas pressure effects are always stabilizing. In streamline topologies with a negative velocity-gradient third invariant, inertial effects prevail leading to instability. Vortex-stretching is identified as the underlying instability mechanism. In flows with positive velocity-gradient third derivative, pressure overcomes inertial effects to stabilize the flow.

published proceedings

  • Phys Rev E Stat Nonlin Soft Matter Phys

altmetric score

  • 0.5

author list (cited authors)

  • Mishra, A. A., & Girimaji, S. S.

citation count

  • 14

complete list of authors

  • Mishra, Aashwin A||Girimaji, Sharath S

publication date

  • November 2015