Investigation of microbubble boundary layer using particle tracking velocimetry Academic Article uri icon


  • Particle tracking velocimetry has been used to measure the velocity fields of both continuous phase and dispersed microbubble phase, in a turbulent boundary layer, of a channel flow. Hydrogen and oxygen microbubbles were generated by electrolysis. The average size of the microbubbles was 15m in radius. Drag reductions up to 40% were obtained, when the accumulation of microbubbles took place in a critical zone within the buffer layer. It is confirmed that a combination of concentration and distribution of microbubbles in the boundary layer can achieve high drag reduction values. Microbubble distribution across the boundary layer and their influence on the profile of the components of the liquid mean velocity vector are presented. The spanwise component of the mean vorticity field was inferred from the measured velocity fields. A decrease in the magnitude of the vorticity is found, leading to an increase of the viscous sublayer thickness. This behavior is similar to the observation of drag reduction by polymer and surfactant injection into liquid flows. The results obtained indicate that drag reduction by microbubble injection is not a simple consequence of density effects, but is an active and dynamic interaction between the turbulence structure in the buffer zone and the distribution of the microbubbles.

published proceedings


author list (cited authors)

  • Ortiz-Villafuerte, J., & Hassan, Y. A.

citation count

  • 36

publication date

  • May 2006