Calculating the Breakdown Point of Sparse Linear Models
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
In robust statistics, the concept of breakdown point was introduced to quantify the robustness of an estimator in a linear regression model. Computing the breakdown point is useful in tuning some robust regression estimators (e.g., the least trimmed squares estimator). Computing the breakdown point for a structured linear model (i.e., one with dependencies among some p rows of the np design matrix X) can be very demanding. This article presents an algorithm for calculating the maximum breakdown point for sparse linear models, which are a special type of structured linear model whose design matrix has many zero entries. The algorithm decomposes a sparse design matrix into smaller submatrixes on which the computation is performed, thereby leading to substantial savings in computation. An assembly process, along with a few numerical examples, illustrate the application of the algorithm and demonstrate its computational benefits. 2009 American Statistical Association and the American Society for Quaity.