Competition, predation and nest niche shifts among tropical cavity nesters: phylogeny and natural history evolution of parrots (Psittaciformes) and trogons (Trogoniformes) Academic Article uri icon

abstract

  • Nest site selection by birds is a critically important life history trait as competition for suitable sites can be intense, and because birds are at their most vulnerable to predators during nesting. Previous studies show that the clutch size and nestling period evolve in response to competition for nest sites and nest predation, respectively. This provides the opportunity to study the relative contribution of competition and predation to the evolution of nesting niche. Using previously published phylogenies for parrots and trogons, I found evidence for at least 13 independent evolutionary transitions from tree cavities to alternative nesting niches (including termitaria, cliffs, and burrows). I analyzed variations in clutch size, incubation period and nestling period for 16 phylogenetically controlled pairs of species to test the relative roles of competition for tree cavities and nest predation, in favoring evolutionary switches to alternative nest sites. Tree cavity nesting species did not have larger clutch sizes as predicted if competition for tree cavities leads birds to invest heavily in nesting once they obtain a nest site (the limited breeding opportunities hypothesis). Instead I found that shifts to alternative nesting niches were accompanied by an increase in nestling period. As nestling period is a surrogate measure for long-term nest predation rates, this finding suggests that nest predation has been more important than competition in niche diversification among cavity nesting parrots and trogons. The timing of events in South America suggests that the explosive radiation of mammalian nest predators during the Upper-Oligocene, Lower-Miocene (20-30 million years ago) corresponded with the radiation of parrot and trogon taxa that exploit novel nesting niches.

altmetric score

  • 3

author list (cited authors)

  • Brightsmith, D. J.

citation count

  • 36

publication date

  • December 2004

publisher