Real-Time Error Protection of Embedded Codes for Packet Erasure and Fading Channels
Academic Article
Overview
Identity
Additional Document Info
Other
View All
Overview
abstract
Reliable real-time transmission of packetized embedded multimedia data over noisy channels requires the design of fast error control algorithms. For packet erasure channels, efficient forward error correction is obtained by using systematic Reed-Solomon (RS) codes across packets. For fading channels, state-of-the-art performance is given by a product channel code where each column code is an RS code and each row code is a concatenation of an outer cyclic redundancy check code and an inner rate-compatible punctured convolutional code. For each of these two systems, we propose a low-memory linear-time iterative improvement algorithm to compute an error protection solution. Experimental results for the two-dimensional and three-dimensional set partitioning in hierarchical trees coders showed that our algorithms provide close to optimal average peak signal-to-noise ratio performance, and that their running time is significantly lower than that of all previously proposed solutions.