Cellular Hypoxia Promotes Heterotopic Ossification by Amplifying BMP Signaling Academic Article uri icon


  • Hypoxia and inflammation are implicated in the episodic induction of heterotopic endochondral ossification (HEO); however, the molecular mechanisms are unknown. HIF-1α integrates the cellular response to both hypoxia and inflammation and is a prime candidate for regulating HEO. We investigated the role of hypoxia and HIF-1α in fibrodysplasia ossificans progressiva (FOP), the most catastrophic form of HEO in humans. We found that HIF-1α increases the intensity and duration of canonical bone morphogenetic protein (BMP) signaling through Rabaptin 5 (RABEP1)-mediated retention of Activin A receptor, type I (ACVR1), a BMP receptor, in the endosomal compartment of hypoxic connective tissue progenitor cells from patients with FOP. We further show that early inflammatory FOP lesions in humans and in a mouse model are markedly hypoxic, and inhibition of HIF-1α by genetic or pharmacologic means restores canonical BMP signaling to normoxic levels in human FOP cells and profoundly reduces HEO in a constitutively active Acvr1(Q207D/+) mouse model of FOP. Thus, an inflammation and cellular oxygen-sensing mechanism that modulates intracellular retention of a mutant BMP receptor determines, in part, its pathologic activity in FOP. Our study provides critical insight into a previously unrecognized role of HIF-1α in the hypoxic amplification of BMP signaling and in the episodic induction of HEO in FOP and further identifies HIF-1α as a therapeutic target for FOP and perhaps nongenetic forms of HEO. © 2016 American Society for Bone and Mineral Research.

altmetric score

  • 67.5

author list (cited authors)

  • Wang, H., Lindborg, C., Lounev, V., Kim, J., McCarrick-Walmsley, R., Xu, M., ... Pignolo, R. J.

citation count

  • 70

publication date

  • April 2016