Kinesin's cover-neck bundle folds forward to generate force. Academic Article uri icon

abstract

  • Each step of the kinesin motor involves a force-generating molecular rearrangement. Although significant progress has been made in elucidating the broad features of the kinesin mechanochemical cycle, molecular details of the force generation mechanism remain a mystery. Recent molecular dynamics simulations have suggested a mechanism in which the forward drive is produced when the N-terminal cover strand forms a beta-sheet with the neck linker to yield the cover-neck bundle. We tested this proposal by comparing optical trapping motility measurements of cover strand mutants with the wild-type. Motility data, as well as kinetic analyses, revealed impairment of the force-generating capacity accompanied by a greater load dependence in the mechanochemical cycle. In particular, a mutant with the cover strand deleted functioned only marginally, despite the fact that the cover strand, the N-terminal "dangling end," unlike the neck linker and nucleotide-binding pocket, is not involved with any previously considered energy transduction pathway. Furthermore, a constant assisting load, likely in lieu of a power stroke, was shown to rescue forward motility in the cover strand deletion mutant. Our results support a stepping mechanism driven by dynamic cover-neck bundle formation. They also suggest a strategy to generate motors with altered mechanical characteristics by targeting the force-generating element.

published proceedings

  • Proc Natl Acad Sci U S A

altmetric score

  • 3

author list (cited authors)

  • Khalil, A. S., Appleyard, D. C., Labno, A. K., Georges, A., Karplus, M., Belcher, A. M., Hwang, W., & Lang, M. J.

citation count

  • 121

complete list of authors

  • Khalil, Ahmad S||Appleyard, David C||Labno, Anna K||Georges, Adrien||Karplus, Martin||Belcher, Angela M||Hwang, Wonmuk||Lang, Matthew J

publication date

  • December 2008