High temperature radiation responses of amorphous SiOC/crystalline Fe nanocomposite Academic Article uri icon

abstract

  • © 2016 Elsevier B.V. The radiation tolerance of amorphous silicon oxycarbide (SiOC) and crystalline Fe nanocomposites were examined by ion irradiation and transmission electron microscopy characterization. A comparison was made between a pure Fe film and SiOC/Fe multilayers. The composites were subjected to 120 keV He + ions to average damage levels from approximately 0.5 to 10.7 displacements per atom (dpa) at 600 °C. Compared to pure Fe films, the swelling resistance in the Fe layers of thick SiOC/Fe (80/60 nm) multilayer films is improved by 2.2 times and the averaged void size is reduced to half. In some instances, a crystalline Fe x Si y O z reaction layer formed between the Fe and SiOC components of the composite, and the interface between Fe and Fe x Si y O z was observed to be incoherent. Void denuded zones were observed in the Fe layer close to the SiOC/Fe and Fe/Fe x Si y O z interfaces. For thin SiOC/Fe (14/14 nm) multilayers, layer breakdown was observed and the extent of the layer breakdown became more significant with increasing dpa values. However, there were no voids in the Fe component of the thin SiOC/Fe nanocomposites. These results suggest that the SiOC/Fe and Fe/Fe x Si y O z interfaces act as efficient defect sinks which promote point defect recombination and suppress void swelling.

published proceedings

  • Journal of Nuclear Materials

author list (cited authors)

  • Su, Q., Price, L., Shao, L., & Nastasi, M

citation count

  • 16

complete list of authors

  • Su, Qing||Price, Lloyd||Shao, Lin||Nastasi, Michael

publication date

  • October 2016