Effect of Flow Curvature on Forward Flight Performance of a Micro-Air-Vehicle-Scale Cycloidal-Rotor Conference Paper uri icon


  • This paper describes the systematic experimental and computational studies performed to obtain a fundamental understanding of the physics behind the lift and thrust production of a cycloidal rotor (cyclorotor) in forward flight fora unique blade pitching kinematics. The flow curvature effect (virtual camber and incidence due to the curvilinear flow) was identified to be a key factor affecting the lift, thrust, and power of the cyclorotor in forward flight. The experimental study involved systematic testingof amicro air vehicle-scale cyclorotorinan open-jet wind tunnel using a custom built three-component balance. The key parameters varied include rotor chord/radius ratio and blade pitching axis location because these two parameters have a strong impact on flow curvature effects. Because of the virtual camber/incidence effects and the differences in the aerodynamic velocities around the azimuth, the blades producea small downward lift when they operate in the upper half ofthe circular trajectory and a large upward lift in the lower half, producing a net lift in the upward direction. The magnitude of this lift depends on the chord/radius ratio and the blade pitching axis location, and the direction of lift depends on the sense of rotation. The positive thrust on the cyclorotor is produced when the blades operateinthe rear halfof the rotor, while they produce a small negative thrustasthey operateinthe frontal half. The lift per unit powerofthe rotorisincreased with chord/radius ratio until a c/R of 0.67. Moving the pitching axis location closer to the leading edge also increased the lift producing efficiency of the cyclorotor. It was observed that the optimum chord/radius ratio for maximum thrust per unit power decreased with forward speed. A key conclusion was that the lift producing efficiency (lift per unit power) of the rotor (for a constant thrust) increased with forward speed while the thrust producing efficiency (fora constant lift) decreased with forward speed. This study also disproves the conventional argument that a cyclorotor needs two completely different pitching schedules for efficient hover and forward flight because it is shown that a simple phase shifting of the hover kinematics could result in efficient forward flight kinematics provided the cyclorotor has a high chord/radius ratio. Copyright 2013 by the American Institute of Aeronautics and Astronautics, Inc.

published proceedings

  • AIAA Journal

author list (cited authors)

  • Benedict, M., Jarugumilli, T., Lakshminarayan, V., & Chopra, I.

citation count

  • 21

complete list of authors

  • Benedict, Moble||Jarugumilli, Tejaswi||Lakshminarayan, Vinod||Chopra, Inderjit

publication date

  • June 2014