Spectral phase-corrected GRAPPA reconstruction of three-dimensional echo-planar spectroscopic imaging (3D-EPSI). Academic Article uri icon

abstract

  • MR spectroscopic (MRS) images from a large volume of brain can be obtained using a 3D echo-planar spectroscopic imaging (3D-EPSI) sequence. However, routine applications of 3D-EPSI are still limited by a long scan time. In this communication, a new approach termed "spectral phase-corrected generalized autocalibrating partially parallel acquisitions" (SPC-GRAPPA) is introduced for the reconstruction of 3D-EPSI data to accelerate data acquisition while preserving the accuracy of quantitation of brain metabolites. In SPC-GRAPPA, voxel-by-voxel spectral phase alignment between metabolite 3D-EPSI from individual coil elements is performed in the frequency domain, utilizing the whole spectrum from interleaved water reference 3D-EPSI for robust estimation of the zero-order phase correction. The performance of SPC-GRAPPA was compared with that of fully encoded 3D-EPSI and conventional GRAPPA. Analysis of whole-brain 3D-EPSI data reconstructed by SPC-GRAPPA demonstrates that SPC-GRAPPA with an acceleration factor of 1.5 yields results very similar to those obtained by fully encoded 3D-EPSI, and is more accurate than conventional GRAPPA.

published proceedings

  • Magn Reson Med

author list (cited authors)

  • Zhu, X., Ebel, A., Ji, J. X., & Schuff, N.

citation count

  • 33

complete list of authors

  • Zhu, Xiaoping||Ebel, Andreas||Ji, Jim X||Schuff, Norbert

publication date

  • May 2007

publisher